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This paper presents a comparative study between three active control
algorithms which have proven to be successful in controlling the
vibrations of large flexible systems. These algorithms are namely: the
Independent Modal Space Control (IMSC), the Pseudo-inverse (PI) and the

Modified Independent Modal Space Control (MIMSC).

Emphasis is placed, in this study, on demonstrating the
effectiveness of the MIMSC method in controlling the vibration of large
systems with small number of actuators by using an efficient time sharing
strategy. Such a strategy favors the MIMSC over the IMSC method, which
requires a large number of actuators to control equal number of modes,
and also over the PI method which attempts to control large number of
modes with smaller number of actuators through the use of an in-exact

statistical realization of a modal controller.

Numerical examples are presented to illustrate the mains features of

the three algorithms and the merits of the MIMSC method.



INTRODUCTIOR

Active control of the vibration of flexible systems has been
recognized as essential to enhancing the stable operation of these
systems when subjected to external disturbance. Strategies employed in
the design of such control systems are based primarily on modal control
methods whereby the flexible structures are controlled by controlling
their dominant modes of vibrations. Generally, these modal control
strategies belong to either the class of the coupled methods [1-6] or to
the class of the independent modal space control (IMSC) method developed
by Meiroviteh and co-workers [7-12]. In the first eclass, although the
open-loop equations of the system are uncoupled, the close-loop equations
become coupled through the feedback controller. This makes the optimal
computation of the feedback require the solution of a coupled matrix
Riccati equation [3-6]. For large flexible structure the solution of the
resulting Riccati equation can pose serious difficulties which limit
significantly the applicability of the coupled modal control methods. The
IMSC method avoids, however, such limitations as the control laws are
designed completely, in the modal space maintaining the originally
uncoupled open-loop equations of the system as a set of independent
second-order equations even after including the modal feedback
controllers. Meirovitch et al [7-12] show;d, under such conditions, that
it is possible to compute, in a close form, the optimal modal feedback
gains. This feature makes the IMSC method computationally attractive and

lends it suitable for controlling large structures.

The IMSC method requires, however, the use of as many actuators as



the number of modes to be controlled. Such a requirement results in
practical limitation of the method when applied to large structures where

the number of modeled modes can be very large.

Lindberg and Longman [13] proposed to modify the IMSC by using a
small number of actuators to control all the modeled modes through the
consideration of an approximate pseudo-inverse (PI) realization of the
modal controller. This modification can result in physical control forces
which can be far from desired because the PI is in effect a least square
fit of N modal forces to obtain M physical forces. When N=M then the
realization is exact and is also the same as the IMSC. But as M becomes
much smaller than N, 1l.e. when the number of actuators << number of
modes, then the accuracy of the least square fit becomes increasingly
poor. Accordingly, when the realized forces are transformed back to the
modal space the resulting modal forces will be very far from the optimal
forces and this will result in deterioration in the performance of the

controller.

For these reasons, the Modified Independent Modal Space Control

(MIMSC) method is initialed [14].

The MIMSC modifies the IMSC algorithm to account for the control
spillover from the controlled modes into the uncontrolled modes when a
small number of actuators is used to control a large number of modes. The
method incorporates also an optimal placement procedure for determining
the optimal 1location of the actuators in the structure. Moreover, the

MIMSC method relies on an efficient algorithm for "Time Sharing"™ a small



number of actuators in the modal space to control a large number of
modes. In effect the MIMSC uses M optimally placed actuators to control
the M modes that have the highest modal energy at any instant of time and
time share these actuators among the other residual modes when the
control spillover makes their modal energy higher than the controlled

modes.

Comparisons between the IMSC, PI and MIMSC algorithms are presented
here to illustrate the main features and merits of these methods as
applied to the control of vibrations of spring-mass systems and simple

cantilever beams.

DESCRIPTION OF METHODS

Complex flexible systems can be modeled dynamically by a discrete

finite element model as follows :

M6+ K§ =F (1)
where M is the overall mass matrix of the structure
K is the overall stiffness matrix of the structure

& and § are the displacement and acceleration of the nodal points
of the structure
F is the vector of the external and control forces acting on

the structure



Equation (1) is put in the modal space by using the following

weighted modal transformation :
8 = ¢U ' (2)

where U is the modal coordinates of the system

¢ is the weighted modal shape matrix of the eigenvectors of the

flexible system
Using such transformation, reduces the coupled equation of motion
(1) to the following uncoupled form :
U+X0=¢f (3)

where A is a diagonal matrix of the eigenvalues of the system

f is the modal force vector given by

£=0TF = [o1(19). . . . . .4(0p)] *F

_¢N(11). <ON(1N)] (4)

where ¢;(14) is the modal shape at mode i and location 1j.
The modal control forces f, in equation (4), are determined in all

the three algorithms from the close form solution of the Ricecati

Equation such that the control force fy of the 3th mode 1is :

f1 = -(gqwuy + g233)/R (5)

where R is a factor that weighs the importance of minimizing the



vibration with respect to the control forces.
wy is the resonant frequency at the ith normal mode.
Uy, Uy are the modal displacement and velocity respectively.

81» &> are the modal position and velocity feedback gains given

by [7] as :
By = ~wyR + ((WR)Z + «y2R)1/2 (6)
Bp = {2Ruy[~aR + ((wR)? g 2R)V2] 4 2R} 1/2 (7

Accordingly, the displacement uy and velocity t'xi at the it'h mode can
be fedback and used along with equations (5), (6) and (7) to determine

the modal control force fi‘
(I) IMSC MEYHOD

The IMSC is based primarily on the premise that the number of
actuators 1s equal to the number of controlled modes. Such a premise is
attributed to the facts that the physical control forces F, in equation

(4) can be determined exactly from the modal forces f by writing :
F=(¢D) (8)

and that the necessary condition for the existence of (¢T)"1 is the order
of actual physical forces F be equal to order of modal forces f.
Accordingiy, this premise poses serious practical limitations to the
application of the IMSC to control large structures since the number of
modes retained in the mathematical models may be very large and it is

impossible to use an equally large number of actuators to control all



these modes. Therefore, equation (U4) can be rewritten as :
N [rc] = [Bcc BCR] I:F(fl
R Bpc Bgpd LO (9)

fe

or

BecFe (10)

BreFe (11)

fr

where fc,R are the modal forces on the controlled and residual modes

respectively.

Fo are the physical forces on the controlled modes.

Once the modal control forces fc are calculated, equation (10) is solved

to give the physical applied forces Fg as :
Fo = Boa™ 18f (12)
c CcC c

Then equation (11) is used to calculate the modal forces fp that
would excite the residual modes which are generated by the spillover from

the controlled modes.

The IMSC method assumes that fR=° and of course this can only be
true if the number of controlled modes 1is very large compared to the
number of residual modes or when the residual modes are at much higher

frequency band than the controlled modes.
(II) P1 METHOD

The principle limitation of the IMSC method is the requirement that



the number of actuators be equal to the number of controlled modes. When
the number of actuators is less than the number of controlled modes,
equation (8) will no longer be valid. Consider equation (4) when the
control modes are equal to the modelled modes (N) but fewer actuators (M)

are to be used, thus it reduces to :

£ =[] = [o(1q)e ¢ v v o o&q(L)] ®[F
1 1414 11y 1

5% B U0 I C W) (M) (13)
or
£ = VIF (14)

Since vT is not a square matrix, F cannot be obtalned directly through

matrix inversion, The solution of equation (14) for F in terms of f can

be obtained using least-square approximation, which is :

F = B¢ (15)
where B~ is the pseudo-inverse of T given by

B71 = (eel)"Yp (16)
Once the physical forces are calculated, the actual modal control forces
can be computed using equation (13). As noted before, these approximately

computed modal forces will not be equal to the optimal modal forces

determined from the IMSC algorithm.

(IIXI) MIMSC METHOD



The MIMSC method ranks the modes of vibration according to their
modal energy (wizuzﬂ'xz) and dedicates the desired M actuators to control
the highest M modes. The modal control forces fc generated to control
these modes are computed from equations (5), (6) and (7). The exact
realization F, of these forces is computed from equation (12) and the

spillover into the residual modes is calculated from equation (10).

A flow chart of the MIMSC algorithm is shown in Figure (1). The
chart indicates that the time sharing strategy will work first to
attenuate the modal energy of the controlled modes. During that time the
control spillover will excite the uncontrolled modes. When the modal
energy of the uncontrolled modes starts exceeding that of the controlled
modes, the actuators are switched to control these high energy modes in
order to damp out their vibrations. Such time sharing of the actuators

between the modes will eventually bring all these modes under control.
This strategy along with the exact realization of the control forces
favor the MIMSC method over the IMSC and PI methods in controlling the
vibration of large systems with only a few actuators.
NUMERICAL EXAMPLES

I. MILTI SPRING-MASS SYSTEM

Figure (2) shows a multi spring-mass system which is considered as a
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Figure (1) - Flow chart of the MIMSC computational algorithm
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simple example of a flexible system to illustrate the characteristic of

the three algorithms. The main dynamic characteristics of this system are

given in Table (1).

i) Us IMSC method

The three masses of the flexible system shown in Figure (2) are
displaced initially 1,-1 and 0 respectively from their equilibrium
positions and then left to vibrate under the action of an IMSC controller
with all the states are observed. The controller is designed to control
the first mode of vibration through the use of one actuator placed at the

first mass.

Figure (3-a) shows the time history of the amplitudes of vibration
of the three masses. The figure indicates that the IMSC method failed, as
predicted, to control all the 3 modelled modes of vibration of the
system. Such drawback can be related directly to the fact that the
actuator has been utilized only to eliminate the first mode and no

control action is provided to the residual two modes.

ii) Us PI method

Figure (3-b) shows the time history of the amplitudes of vibration
of three masses as obtained by the PI method with one actuator placed at

the first mass.

Although the modal control forces are obtained by using a least~



Table (1) - Dynamic characteristics of a three spring-mass systen.

Stiffness Matrix

2.0000 =-1.0000 0.0000
-1.0000 2.0000 -1.0000
0.0000 -1.0000 2.0000

Mass Matrix

1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

Eigenvalues

0.5858 2.0000 3.4142

Eigenvectors

0.5000 =0.7071 0.5000
0.7071 0.0000 =0.T7071
0.5000 0.7071 0.5000




[MSC method
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Pseudo-Inverse method

MIMSC Method

Figure (3) - Time histories of amplitudes of vibration of spring-mass
system using IMSC, PI and MIMSC methods with one actuator

(R=100)



sqQuare approximation, the figure indicates that this method can result in
damping out the vibrations of the system. This is due to the fact that
all the modes are controlled but by virtue of the in-exact nature of the
feedback control law, the process of suppression of the vibration is not

as dramatic as expected.

1i1) Us MIMSC method

With the time sharing concept, the MIMSC utilizes effectively the
installed actuators such that these actuators will provided exact control
action to the dominant modes and sequence the controller among all the
modes until the vibrations of the system is completely damped out.
Accordingly, in the considered example, the actuator is powered by
signals to eliminate all the three modes of the system and not only the
first mode as in the IMSC. This is achieved by time sharing the actuator,

among the three modes, based on the maximum modal energy ranking.

Figure (3-c) shows the time history of the amplitudes of vibration

of the three masses when the MIMSC method is utilized.

The figure indicates that sharing small number of actuators among a
larger number of modes has been effective in damping out quickly the

amplitudes of vibration of all the modes.

The effectiveness of the MIMSC can best be understood by considering

Figures(l-a) and (4-b).
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Figure (4-a) shows the control that has the highest modal energy at
any instant of time. It can be seen that the actuator is used first to
attenuate the amplitude of vibration of the third mode, which currently
has the highest modal energy. After a small time interval the control
action is switched to control the secocnd mode since its modal energy
becomes higher than the energy of the first and the third modes. This
action of time sharing the single actuator between the modes continues
until all three modes are brought under control. This is demonstrated
clearly in Figure (4-b) by the continuously decaying vibration energy of

the system.

A better quantitative comparison between the three methods can be

established based on the displacement index Ud which is given by :

=t N

t=0 1=1
where N is the number of d.o.f. of system
at is the integration time increment

t. is the maximum time limit of integration

Table (2) summarizes the results of such a comparison when one
actuator 1s placed at mass 1 as well as when two actuators are used at

masses 1 and 2.

The table indicates clearly that the MIMSC is very effective in
damping out the vibration of the 3-mass system particularly when very

small number actuators are used as compared to the IMSC and PI



Table (2) - Effect of the control algorithm on the displacement index for
spring-mass system when one or two actuators are used with

R=100.

method

Using 1 actuator

Using 2 actuators

IMSC
PI
MIMSC

39.47
14.42
9.07

29.21
6.46
5.06




algorithms.

II. CANTILEVER BEAM

Figure (5) shows a flexible steel cantilever beam modeled by a 9-
finite element model that has 9 d.o.f. of linear translations and 9
d.o.f. of angular rotations with node 1 fixed. The beam is 0.45m long and
has rectangular cross section which is 0.0125m wide and 0.0021m thick.
For this beam, the lowest natural frequency is found to be 8.6Hz. In this

example, the beam is subjected to a impulsive load of magnitude 1.0N for

1.0ms at the free end.

(a) Control by one linear actuator

A force actuator, placed at the tip of the flexible beam, is used to

control the vibration of this beam model.

Figures (6-a), (6-b) and (6-c) show the time histories of the
amplitudes of transverse vibrations of the beam at its free end as
obtained by the application of IMSC, PI and MIMSC algorithms

respectively.

The figures indicate that the IMSC is again successful in
suppressing the lowest mode of vibration but all the higher modes remain
totally undarped. On the contrary, the PI and MIMSC methods exhibit

complete control over all the modes. However, the response of the system
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IMSC method (1 force actuator)
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Figure (6) - Time history of the amplitudes of transverse vibration of
cantilever beam using IMSC, PI and MIMSC methods with one
linear actuator (R=1000)



when using the MIMSC method indicates faster decay of the vibration than
the PI method. Furthermore, with the MIMSC method, the maximum amplitude
of oscillation of the beam is about 68.1% and 28.8¢ lower than those

obtained by the PI method and the IMSC method respectively.
Figures (7-a) and (7-b) show the mode of the highest modal energy at
any time as well as the instantaneous modal energy of the beam

respectively when the control action is based on the MIMSC method.

(b) Control by one torgue actuator

When a single torque actuator, placed at element 1, is used to
control the vibration of the flexible cantilever beam, then the resulting
time histories of the amplitudes of transverse vibration of the beam tip
are as shown in Figure (8-a), (8-b) and (8-c) for IMSC, PI and MIMSC

controllers respectively.

Again, the figures emphasize that the MIMSC method damp out all the
vibration modes effectively. But, in PI method, the beam continue to
vibrate without decaying with an amplitude higher than those in IMSC and
MIMSC methods. This is because the errors created by the least-square
approximation of 18 modal forces by one physical force is very high that

renders the feedback control law ineffective.

Quantitatively, the comparison of the three method when a force or

torque actuators are used is given in Table (3).
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IMSC method (1 torque actuator)
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Table (3) - Effect of the control algorithm on the displacement index for

cantilever beam when using one linear or rotary actuator with
R=1000.

method | Using force actuator (x106) | Using torque actuator (x106)
IMSC | 19.64 ! 17.25
PI1 ] 29.56 | 68.12
MIMSC ! 6.70 ! 9.78




CORCLUSIONS

This paper has presented a comparative study between three active
control algorithms, IMSC, PI and MIMSC, which are suitable for

controlling large flexible systems.

The study showed that when small number of actuators are used to
control large number of modes then the MIMSC results in faster and
effective suppression of the vibrations. The IMSC method is found,
however, to be effective in damping out the amplitudes of low frequency
modes but due to the fact that the IMSC does not account for control
spillover it is demonstrated here that the high frequency modes remain

uncontrolled.

With the PI method it is shown that the in-exact realization of the
modal controller can result in slower damping of the vibration when the
number of actuators (M) is not far smaller than the number of controlled
modes (N). But when M<<KN the least square nature of the PI would result
in degradation of the controller performance as demonstrated clearly in

the case of the cantilever beam.

The study emphasized the potential of the MIMSC for being a viable
and efficient method for controlling the vibrations of large systems with

only few actuators.
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